Schematic Algebras and the Auslander-Gorenstein Property

نویسنده

  • L. WILLAERT
چکیده

Noncommutative algebraic geometry studies a certain quotient category Rqgr of the category of graded R-modules which for commutative R is equivalent to the category of quasi-coherent sheaves by a famous theorem of Serre. For a large class of graded algebras, the so-called schematic algebras, we are able to construct a kind of scheme such that the coherent sheaves on it are equivalent to R-qgr. We give a brief survey on the results so-far on schematic algebras and include some new results on cohomological properties of Auslander-Gorenstein algebras which might be useful in determining the strength of the schematic property. Résumé En géométrie algébrique noncommutative on étudie un certain quotient R-qgr de la catégorie des R-modules gradués, qui pour R commutatif, est équivalente à la catégorie des faisceaux quasi-cohérents par un théorème bien connu de Serre. Pour une grande classe d’algèbres, les algèbres schématiques, nous pouvons construire une sorte de schéma sur lequel les faisceaux cohérents forment une catégorie équivalente à R-qgr. Nous rappelons les résultats connus sur les algèbres schématiques et donnons quelques résultats nouveaux sur les propriétés cohomologiques des algèbres de Auslander-Gorenstein. 1 Preliminaries and introduction Let k be an algebraically closed field of characteristic zero and consider a k-algebra R of the following kind : R is connected (i.e. R is positively graded and R0 = k), Noetherian and generated in degree 1. The category of graded R-modules will be denoted by R-gr and the two-sided ideal ⊕i≥1Ri by R+. A graded R-module M is said to be torsion if each of its elements is annihilated by some power of R+ : ∀m ∈ M ∃n ∈ : (R+)m = 0. The set {(R+) : n ∈ } is an idempotent filter (cf. [11]). Hence we have a localization functor Qκ+ available. Moreover, the AMS 1980 Mathematics Subject Classification (1985 Revision): 14A15, 14A22, 16E40, 16W50 ∗Research assistant of the N.F.W.O. (Belgium) — Department of Mathematics, University of Antwerp, U.I.A., Universiteitsplein 1, B-2610 Wilrijk Société Mathématique de France

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Auslander-gorenstein Property for Z-algebras

We provide a framework for part of the homological theory of Z-algebras and their generalizations, directed towards analogues of the Auslander-Gorenstein condition and the associated double Ext spectral sequence that are useful for enveloping algebras of Lie algebras and related rings. As an application, we prove the equidimensionality of the characteristic variety of an irreducible representat...

متن کامل

An Auslander-type Result for Gorenstein-projective Modules

An artin algebra A is said to be CM-finite if there are only finitely many, up to isomorphisms, indecomposable finitely generated Gorenstein-projective A-modules. We prove that for a Gorenstein artin algebra, it is CM-finite if and only if every its Gorenstein-projective module is a direct sum of finitely generated Gorenstein-projective modules. This is an analogue of Auslander’s theorem on alg...

متن کامل

A ] 7 S ep 2 00 5 k - Gorenstein Modules ∗ †

Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. In this paper, we first introduce the notion of k-Gorenstein modules with respect to ΛUΓ and then characterize it in terms of the U -resolution dimension of some special injective modules and the property of the functors Ext(Ext(−, U), U) preserving monomorphisms, which develops a classical result of Auslander....

متن کامل

k-Gorenstein Modules

Let Λ and Γ be artin algebras and ΛUΓ a faithfully balanced selforthogonal bimodule. In this paper, we first introduce the notion of k-Gorenstein modules with respect to ΛUΓ and then characterize it in terms of the U -resolution dimension of some special injective modules and the property of the functors Exti(Exti(−, U), U) preserving monomorphisms, which develops a classical result of Auslande...

متن کامل

Gorensteinness of Invariant Subrings of Quantum Algebras

We prove Auslander-Gorenstein and GKdim-Macaulay properties for certain invariant subrings of some quantum algebras, the Weyl algebras, and the universal enveloping algebras of finite dimensional Lie algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001